trimesh.poses¶
poses.py¶
Find stable orientations of meshes.
Functions

Computes stable orientations of a mesh and their quasistatic probabilites. 

trimesh.poses.
compute_stable_poses
(mesh, center_mass=None, sigma=0.0, n_samples=1, threshold=0.0)¶ Computes stable orientations of a mesh and their quasistatic probabilites.
This method samples the location of the center of mass from a multivariate gaussian with the mean at the center of mass, and a covariance equal to and identity matrix times sigma, over n_samples.
For each sample, it computes the stable resting poses of the mesh on a a planar workspace and evaluates the probabilities of landing in each pose if the object is dropped onto the table randomly.
This method returns the 4x4 homogeneous transform matrices that place the shape against the planar surface with the zaxis pointing upwards and a list of the probabilities for each pose.
The transforms and probabilties that are returned are sorted, with the most probable pose first.
 Parameters
mesh (trimesh.Trimesh) – The target mesh
com ((3,) float) – Rhe object center of mass. If None, this method assumes uniform density and watertightness and computes a center of mass explicitly
sigma (float) – Rhe covariance for the multivariate gaussian used to sample center of mass locations
n_samples (int) – The number of samples of the center of mass location
threshold (float) – The probability value at which to threshold returned stable poses
 Returns
transforms ((n, 4, 4) float) – The homogeneous matrices that transform the object to rest in a stable pose, with the new zaxis pointing upwards from the table and the object just touching the table.
probs ((n,) float) – Probability in (0, 1) for each pose